

Low Density Parity Check
Code for Rate 7/8

September 2005

 Page ii September 2005

CONTENTS
Section Page

1. Background .. 1
2. Introduction.. 2
3. Baselined (8176,7156) LDPC Code... 3
4. Encoding ... 5
5. Recommended Shortened (8160, 7136) Code .. 6
6. Randomization and Synchronization... 8
7. References... 8
8. Appendix A – Generator Matrix Circulant table ... 9
9. Appendix B – Complexity ... 11
10. Appendix C – FPGA test results... 12

 Page iii September 2005

LIST OF FIGURES

Section Page

Figure 1. Example of a 15 x 15 circulant matrix.. 2
Figure 2. Example of a quasi-cyclic matrix.. 3
Figure 3. Base Parity Check Matrix of the (8176, 7156) LDPC code.. 3
Figure 4. Scatter Chart of Parity Check Matrix.. 4
Figure 5. Systematic Circulant Generator Matrix .. 6
Figure 6. Shortened Codeword... 7
Figure 7. Bit Error Rate Test Results ... 12
Figure 8. Block Error Rate Test Results... 13

 Page iv September 2005

LIST OF TABLES

Section Page

Table 1. Specification of Circulants ... 4
Table 2. Table of Circulants for the Generator Matrix.. 9

 Page 1 September 2005

1. BACKGROUND

The mid-1990’s were highlighted by the rediscovery of Low Density Parity Check codes (LDPCC) in the
field of channel coding [1]. Originally invented by R. Gallager in his PhD thesis in 1961 [2], this coding
technique was largely forgotten for more than 30 years. The primary advance in LDPCC is the discovery
of an iterative decoding algorithm, now called Belief Propagation (BP) decoding, which offers near-
optimum performance for large linear LDPCC at a manageable complexity. LDPCC performance gains
were difficult to technologically realize in the early 1960’s. Several decades of VLSI development has
finally made the implementation of these codes practical.

The original construction, now called Gallager LDPCC, has come to be regarded as a special class of
LDPCC. Recent advances in LDPC code construction have resulted in the development of new codes
with (arguably) improved performance over Gallager LDPCC. One class of these codes, irregular
LDPCC [3], demonstrates improved performance in the waterfall region. Disadvantages of irregular
codes, however, include an increase, in general, in the number of iterations required for decoding
convergence and an unequal error protection between code bits resulting from the irregular structure.
Another class of LDPCC developed using algebraic construction based on finite geometries [4] has shown
to provide very low error floors and very fast iterative convergence. These qualities make these codes a
good fit for near Earth applications where very high data rates and high reliability are the driving
requirements.

 Page 2 September 2005

2. INTRODUCTION

A linear block code is designated in this orange book by (n, k) where n is the length of the codeword (or
block) and k is the length of the information sequence. LDPC codes are linear block codes in which the
ratio of the total number of 1’s to the total number of elements in the parity check matrix is << 0.5. The
distribution of the 1’s determine the structure and performance of the decoder. An LDPC code is defined
by its parity check matrix. The k x n generator matrix which is used to encode a linear block code can be
derived from the parity check matrix through linear operations. (The reader is encouraged to review [8]
for an overview of linear block codes).

The LDPC code considered in this specification is a member of a class of codes called Quasi-Cyclic
codes. The construction of these codes involves juxtaposing smaller circulants (or cyclic submatrices) to
form a larger parity check or base matrix.

An example of a circulant is shown in Figure 1. Notice that every row is one bit right cyclic shift (where
the end bit is wrapped around to the beginning bit) of the previous row. The entire circulant is uniquely
determined and specified by its first row. For this example the first row has 4 1’s or a row weight of 4.

Figure 1. Example of a 15 x 15 circulant matrix

An example of a quasi-cyclic parity check matrix is shown in Figure 2. In this case, a quasi-cyclic 10 x
25 matrix is formed by an array of 2 x 5 circulant submatrices of size 5 x 5. To unambiguously describe
this matrix, only the position of the 1’s in the first row of every circulant submatrix and the location of
each submatrix within the base matrix is needed.

010001011000000
001000101100000
000100010110000
000010001011000
000001000101100
000000100010110
000000010001011
100000001000101
110000000100010
011000000010001
101100000001000
010110000000100
001011000000010
000101100000001
100010110000000

 Page 3 September 2005

Figure 2. Example of a quasi-cyclic matrix

Constructing parity check matrices in this manner produces two positive features:
 1. the encoding complexity can be made linear with the code length or parity bits using shift
registers, and
 2. encoder and decoder routing complexity in the interconnections of integrated circuits is reduced.

3. BASELINED (8176,7156) LDPC CODE

The parity check matrix for the (8176, 7156) LDPC code is formed by using a 2 x 16 array of 511 x 511
square circulants. This creates a parity check matrix of dimension 1022 x 8176. The structure of the
parity check base matrix is shown in Figure 3.

16,215,214,213,212,211,210,29,28,27,26,25,24,23,22,21,2

16,115,114,113,112,111,110,19,18,17,16,15,14,13,12,11,1

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

Figure 3. Base Parity Check Matrix of the (8176, 7156) LDPC code

Each Ai,j is a 511 x 511 circulant. The row weight of the each of the 32 circulants is 2, i.e. there are two
1’s in each row. The total row weight of each row in the parity check matrix is 2 x 16 or 32. The column
weight of each circulant is also 2, i.e. there are two 1’s in each column. The total weight of each column
in the parity check matrix is 2 x 2 or 4. The position of the 1’s in each circulant is defined in table 1. A
scatter chart of the parity check matrix is shown in figure 4 where every 1 bit in the matrix is represented
by a point.

1000110010010100110001001
1100001001001010011010100
0110010100100100001101010
0011001010010011000100101
0001100101101001100010010
1100000011010011000110100
0110010001101001100001010
0011011000010100110000101
0001101100001010011010010
1000100110100100001101001

 Page 4 September 2005

Figure 4. Scatter Chart of Parity Check Matrix

Table 1. Specification of Circulants

Circulant 1’s position in 1st row of circulant Absolute 1’s position in 1st row of Parity Check

Matrix
A1,1 0, 176 0, 176
A1,2 12, 239 523, 750
A1,3 0, 352 1022, 1374
A1,4 24, 431 1557, 1964
A1,5 0, 392 2044, 2436
A1,6 151, 409 2706, 2964
A1,7 0, 351 3066, 3417
A1,8 9, 359 3586, 3936
A1,9 0, 307 4088, 4395
A1,10 53, 329 4652, 4928
A1,11 0, 207 5110, 5317

 Page 5 September 2005

A1,12 18, 281 5639, 5902
A1,13 0, 399 6132, 6531
A1,14 202, 457 6845, 7100
A1,15 0, 247 7154, 7401
A1,16 36, 261 7701, 7926
A2,1 99, 471 99, 471
A2,2 130, 473 641, 984
A2,3 198, 435 1220, 1457
A2,4 260, 478 1793, 2011
A2,5 215, 420 2259, 2464
A2,6 282, 481 2837, 3036
A2,7 48, 396 3114, 3462
A2,8 193, 445 3770, 4022
A2,9 273, 430 4361, 4518
A2,10 302, 451 4901, 5050
A2,11 96, 379 5206, 5489
A2,12 191, 386 5812, 6007
A2,13 244, 467 6376, 6599
A2,14 364, 470 7007, 7113
A2,15 51, 382 7205, 7536
A2,16 192, 414 7857, 8079

Note that the numbers in the second column represent the relative column position of the 1’s in the first
row of each circulant. Since there are only 511 possible positions, these numbers can only range from 0
to 510. The third column represents the absolute position of the 1’s in the parity-check matrix. There are
exactly 8176 possible; therefore these numbers can only range from 0 to 8175.

4. ENCODING
The encoder can be designed using the method given in [6]. The generator matrix of the (8176, 7156)
code consists of two parts. The first part is a 7154 x 8176 submatix in systematic-circulant form as shown
in Figure 5. It consists of a 7154 x 7154 identity matrix and two columns of 511 x 511 circulants Bi,j’s,
each column consisting of 14 circulants. The I’s are the 511 x 511 identity submatrices and the 0’s are
the all zero 511 x 511 submatrices. The second part consists of two independent rows. The first part
generates a (8176, 7154) LDPC subcode of the (8176, 7156) code. Each codeword in the subcode
consists of 7154 information bits and 1022 parity-check bits. For reason given in Section 4.1, there are
advantages in using the subcode implementation. The circulants Bi,j’s are constructed based on the
algorithm given below:

1. From Figure 3 and Table 1, define

=

2,162,15

1,161,15

AA
AA

D , which is a 1022 x 1022 matrix.

2. Let u = (1 0 0 0 …. 0) be the unit 511 tuple, i.e. a vector quantity of length 511 with a “1” at the
leftmost position and “0”s in the rest.

3. Define)(2,1, iii bbz = where i = 1, 2, ..., 14 and the bi,j’s are first row of the Bi,j circulants

 Page 6 September 2005

4. Define

=

i

i
i

2,

1,

A
A

M , where i = 1, 2, …, 14. (Note that the parity check matrix can now be

represented as: [M1 M2 … M14 D])
5. Since the rank of D is 1020 not 1022, there are two linearly dependent columns, 511th and 1022nd.

Set the 511th and 1022nd elements of iz to zero and solve 0DM TT =+ ii zu for iz , where i = 1,

2, …, 14 and T superscript represents matrix transpose.
6. The bi,j’s can be extracted from the zi’s. (They are numerically tabulated in Appendix A.)

There are many ways to design the encoder based on the generator matrix in Figure 5. These schemes
have complexities that are proportional to the length of the codeword or parity check bits [6].

14,214,1

13,213,1

12,212,1

11,211,1

10,210,1

9,29,1

8,28,1

7,27,1

6,26,1

5,25,1

4,24,1

3,23,1

2,22,1

1,21,1

BBI0000000000000
BB0I000000000000
BB00I00000000000
BB000I0000000000
BB0000I000000000
BB00000I00000000
BB000000I0000000
BB0000000I000000
BB00000000I00000
BB000000000I0000
BB0000000000I000
BB00000000000I00
BB000000000000I0
BB0000000000000I

Figure 5. Systematic Circulant Generator Matrix

5. RECOMMENDED SHORTENED (8160, 7136) CODE

Using the generator matrix given by Figure 5, an encoder can be implemented using a circuit described in
[6]. This encoder generates a (8176, 7154) LDPC subcode of the (8176, 7156) code. Current spacecraft
and ground systems manipulate and process data at 32-bit computer word size. Neither (8176, 7154) or
(8176, 7156) is a multiple of 32. It is beneficial to shorten the codeword to the dimensions of (8160,
7136). In other words, by shortening the information sequence to 7136 through the use of 18 bits of
virtual fill, the (8176, 7154) subcode encoder can be used. This is accomplished by encoding the virtual
fill bits with zeros but not transmitting them; thus the total codeword length becomes 8158. Note that it is

 Page 7 September 2005

not necessary to add two independent rows to the generator matrix to encode the full (8176, 7156) code
because these bits would be shortened anyway and so the subcode is sufficient and less complicated for
this application. Since the codelength of 8158 is two bits shy of 8160, an exact multiple of 32, two bits of
actual transmitted zero fill are appended to end of the codeword to achieve a shortened code dimension of
(8160, 7136) bits or (1020, 892) octets or (255, 223) 32-bit words. The shortened codeword is shown in
Figure 6.

The received shortened codeword would require the removal of the 2 zero fill bits prior to decoding. The
decoder would then reproduce the 18 virtual fill zeros after processing but would, in general, not pass
these 18 zeros on to the ground equipment.

00 0

18 virtual fill zeros
(encoded but not sent)

U7136... ... P1 P2 P1022 0 0U2U1 ...

Shortened 8160 bits Codeword (with 2 bits fill)

Unshortened 8176 bits Codeword

7136 bits of information 1022 parity bits 2 zero fill bits

Figure 6. Shortened Codeword

 Page 8 September 2005

6. RANDOMIZATION AND SYNCHRONIZATION
The use of the recommended shortened (8160, 7136) LDPC code does not guarantee sufficient bit
(symbol) transitions to acquire or maintain bit (symbol) synchronization. It is highly recommended that a
pseudo-randomizer be used after encoding in accordance to CCSDS recommendation 131.0-B-1, TM
Synchronization and Channel Coding. Blue Book. Issue 1. September 2003 Section 7.

In addition, frame (codeword) synchronization is required so that the receiver can identify the beginning
of the frame (codeword) for proper decoding. The use of an attached sync marker (ASM) as specified in
CCSDS recommendation 131.0-B-1, TM Synchronization and Channel Coding. Blue Book. Issue 1.
September 2003 Section 6.6 is required. Note that the ASM is not pseudo-randomized.

7. REFERENCES

[1] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check
codes,” Electro. Lett., vol. 32, pp. 1645-1646, Aug. 1996.

[2] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory, IT-8, pp. 21-28, Jan.
1962.

[3] T. Richardson and R. Urbanke, “Design of capacity-approaching low density parity check codes,”
IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001.

[4] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on finite geometries:
a rediscovery and new results,” IEEE Trans. Information Theory, vol. 47, pp. 2711-2736, Nov. 2001.

[5] W. Fong, “White Paper for Low Density Parity Check (LDPC) Codes for CCSDS Channel Coding
Blue Book,” CCSDS P1B Channel Coding Meeting: Houston, TX, Oct. 2002.

[6] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient Encoding of Quasi-Cyclic Low Density
Parity Check Codes,” accepted for publication in: IEEE Transactions on Communication.

[7] J. Heo, “Analysis of scaling soft information on low density parity check code,” Electro. Lett., vol.
39, pp. 219-221, Jan. 2003.

[8] S. Lin and D. Costello, Jr. Error Control Coding, 2nd Ed. New Jersey: Pearson Prentice Hall, 2004.

 Page 9 September 2005

8. APPENDIX A – GENERATOR MATRIX CIRCULANT TABLE

Table 2. Table of Circulants for the Generator Matrix

Circulant 1st row of circulant

B1,1 55BF56CC55283DFEEFEA8C8CFF04E1EBD9067710988E25048D67525426939E2068D2
DC6FCD2F822BEB6BD96C8A76F4932AAE9BC53AD20A2A9C86BB461E43759C

B1,2 6855AE08698A50AA3051768793DC238544AF3FE987391021AAF6383A6503409C3CE9
71A80B3ECE12363EE809A01D91204F1811123EAB867D3E40E8C652585D28

B2,1 62B21CF0AEE0649FA67B7D0EA6551C1CD194CA77501E0FCF8C85867B9CF679C18B
CF7939E10F8550661848A4E0A9E9EDB7DAB9EDABA18C168C8E28AACDDEAB1E

B2,2 64B71F486AD57125660C4512247B229F0017BA649C6C11148FB00B70808286F1A9790
748D296A593FA4FD2C6D7AAF7750F0C71B31AEE5B400C7F5D73AAF00710

B3,1 681A8E51420BD8294ECE13E491D618083FFBBA830DB5FAF330209877D801F92B5E0
7117C57E75F6F0D873B3E520F21EAFD78C1612C6228111A369D5790F5929A

B3,2 04DF1DD77F1C20C1FB570D7DD7A1219EAECEA4B2877282651B0FFE713DF338A632
63BC0E324A87E2DC1AD64C9F10AAA585ED6905946EE167A73CF04AD2AF9218

B4,1 35951FEE6F20C902296C9488003345E6C5526C5519230454C556B8A04FC0DC642D682
D94B4594B5197037DF15B5817B26F16D0A3302C09383412822F6D2B234E

B4,2 7681CF7F278380E28F1262B22F40BF3405BFB92311A8A34D084C086464777431DBFD
DD2E82A2E6742BAD6533B51B2BDEE0377E9F6E63DCA0B0F1DF97E73D5CD8

B5,1 188157AE41830744BAE0ADA6295E08B79A44081E111F69BBE7831D07BEEBF76232E
065F752D4F218D39B6C5BF20AE5B8FF172A7F1F680E6BF5AAC3C4343736C2

B5,2 5D80A6007C175B5C0DD88A442440E2C29C6A136BBCE0D95A58A83B48CA0E7474E
9476C92E33D164BFF943A61CE1031DFF441B0B175209B498394F4794644392E

B6,1 60CD1F1C282A1612657E8C7C1420332CA245C0756F78744C807966C3E1326438878B
D2CCC83388415A612705AB192B3512EEF0D95248F7B73E5B0F412BF76DB4

B6,2 434B697B98C9F3E48502C8DBD891D0A0386996146DEBEF11D4B833033E05EDC28F8
08F25E8F314135E6675B7608B66F7FF3392308242930025DDC4BB65CD7B6E

B7,1 766855125CFDC804DAF8DBE3660E8686420230ED4E049DF11D82E357C54FE256EA0
1F5681D95544C7A1E32B7C30A8E6CF5D0869E754FFDE6AEFA6D7BE8F1B148

B7,2 222975D325A487FE560A6D146311578D9C5501D28BC0A1FB48C9BDA173E869133A3
AA9506C42AE9F466E85611FC5F8F74E439638D66D2F00C682987A96D8887C

B8,1 14B5F98E8D55FC8E9B4EE453C6963E052147A857AC1E08675D99A308E7269FAC560
0D7B155DE8CB1BAC786F45B46B523073692DE745FDF10724DDA38FD093B1C

B8,2 1B71AFFB8117BCF8B5D002A99FEEA49503C0359B056963FE5271140E626F6F8FCE9
F29B37047F9CA89EBCE760405C6277F329065DF21AB3B779AB3E8C8955400

B9,1 0008B4E899E5F7E692BDCE69CE3FAD997183CFAEB2785D0C3D9CAE510316D4BD6
5A2A06CBA7F4E4C4A80839ACA81012343648EEA8DBBA2464A68E115AB3F4034

B9,2 5B7FE6808A10EA42FEF0ED9B41920F82023085C106FBBC1F56B567A14257021BC5F
DA60CBA05B08FAD6DC3B0410295884C7CCDE0E56347D649DE6DDCEEB0C95E

B10,1 5E9B2B33EF82D0E64AA2226D6A0ADCD179D5932EE1CF401B336449D0FF775754CA
56650716E61A43F963D59865C7F017F53830514306649822CAA72C152F6EB2

B10,2 2CD8140C8A37DE0D0261259F63AA2A420A8F81FECB661DBA5C62DF6C817B4A61D
2BC1F068A50DFD0EA8FE1BD387601062E2276A4987A19A70B460C54F215E184

B11,1 06F1FF249192F2EAF063488E267EEE994E7760995C4FA6FFA0E4241825A7F5B65C74
FB16AC4C891BC008D33AD4FF97523EE5BD14126916E0502FF2F8E4A07FC2

B11,2 65287840D00243278F41CE1156D1868F24E02F91D3A1886ACE906CE741662B40B4EF

 Page 10 September 2005

DFB90F76C1ADD884D920AFA8B3427EEB84A759FA02E00635743F50B942F0
B12,1 4109DA2A24E41B1F375645229981D4B7E88C36A12DAB64E91C764CC43CCEC188EC

8C5855C8FF488BB91003602BEF43DBEC4A621048906A2CDC5DBD4103431DB8
B12,2 2185E3BC7076BA51AAD6B199C8C60BCD70E8245B874927136E6D8DD527DF0693D

C10A1C8E51B5BE93FF7538FA138B335738F4315361ABF8C73BF40593AE22BE4
B13,1 228845775A262505B47288E065B23B4A6D78AFBDDB2356B392C692EF56A35AB4AA

27767DE72F058C6484457C95A8CCDD0EF225ABA56B7657B7F0E947DC17F972
B13,2 2630C6F79878E50CF5ABD353A6ED80BEACC7169179EA57435E44411BC7D566136D

FA983019F3443DE8E4C60940BC4E31DCEAD514D755AF95A622585D69572692
B14,1 7273E8342918E097B1C1F5FEF32A150AEF5E11184782B5BD5A1D8071E94578B0AC7

22D7BF49E8C78D391294371FFBA7B88FABF8CC03A62B940CE60D669DFB7B6
B14,2 087EA12042793307045B283D7305E93D8F74725034E77D25D3FF043ADC5F8B5B186D

B70A968A816835EFB575952EAE7EA4E76DF0D5F097590E1A2A978025573E

Note that the numbers in the second column represent the hexadecimal representation of the first row of
each circulant. Since there are only 511 possible positions, the leftmost bit is padded with a zero to allow
a 128 digit hexadecimal number. Table 2 cannot be as efficiently described as table 1 due to the fact that
the generator circulants do not have a low density of 1’s.

 Page 11 September 2005

9. APPENDIX B – COMPLEXITY

The complexity of LDPC codes has been an area of research and discussion. For a field programmable
gate array (FPGA) or application specific integrated circuit (ASIC) implementation, the encoder’s
complexity are dominated by two factors: 1. the total number of required logic gates and 2. the routing
complexity. For the code presented in this Orange Book, the quasi-cylic property allows for the use of
shift registers whose required number of logic gates is proportional to n-k [6] or 8176-7156= 1020
(unshortened). In regards to the routing complexity, there is currently no way to predict this figure and
would depend on a number of factors such as the choice of the FPGA or ASIC, routing algorithm and the
layout of the device.

The decoder’s complexity is larger than the encoder’s and even more difficult predict. The primary
complexity factors (the total number of required logic gates and the routing complexity) are a function of
the choice of BP decoding algorithm (there are many) as well as the architectural decisions (i.e. parallel or
serial processing, number of bits of finite precision, fixed number of iterations or stopping rule, use of
look up tables, etc.) These choices also determine the decoder’s bit error rate (BER) performance.

For the development of the baselined (8176, 7156) code, an FPGA implementation was used to confirm
the software simulations. A Xilinx 8000 Virtex-2 FPGA was used for the test. The device contained both
the encoder and decoder. The decoder algorithm was a Scaled Min-Sum parallel BP decoder (SMSPD)
described in [7]. The encoder algorithm was a shift register based encoder described in [6]. An
architectural evaluation was performed prior to implementation to produce a quasi-optimal
implementation based on routing, logic requirements and BER performance.

The FPGA had the following statistics: 1. encoder used 2,535 logic slices out of 46,592 available or 5.4%
and 4 memory blocks out of 168 available or 2.4%; 2. decoder used 21,803 logic slices out of 46,592 or
46.8% and 137 memory blocks out of 168 or 81.5%. The number of logic slices is an aggregate measure
of the number of logic gates required and the routing complexity while the memory blocks figure is the
number of dedicated FPGA memory blocks used. It is clear from these statistics that the encoder is of
much lower complexity than the decoder using only 5.4% of the logic slices resources while the decoder
requires 46%.

Appendix C summarizes the test results.

 Page 12 September 2005

10. APPENDIX C – FPGA TEST RESULTS

Figure 7. Bit Error Rate Test Results

Figure 7 shows the BER and Figure 8 shows the Block Error Rate (BLER) test results for 50 and 10
maximum iterations from an FPGA implementation of the baselined (8176, 7156) code. Note that for
both cases the difference between simulations and hardware tests was 0.1 dB or less.

The encoder data rate was limited to 2 x system clock while the decoder operated at 14 x system clock /
number of iterations. For testing, the system clock was set to 100 MHz, so for 10 iterations, the decoder
operated at 140 Mbps. Although, the recommended shortened (8160, 7136) was not tested, it is
reasonable to say that the baselined (8176, 7156) and the recommended shortened (8160, 7136) codes will
have similar results.

 Page 13 September 2005

Figure 8. Block Error Rate Test Results

